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The issue of whether non-Markovianity (NM) could be considered as a resource in quantum information has
been a subject of intense debate in recent years. Recently, a simple mechanism was proposed in which one of the
main features of NM, the backflow of information from the environment to the system, represents a fundamental
and quantifiable resource for generating entanglement within an open quantum system coupled to a finite and
small environment [N. Mirkin, P. Poggi, and D. Wisniacki, Phys. Rev. A 99, 020301(R) (2019)]. In this work,
we extend the validity of this resource mechanism by studying a completely different and more general scheme
where the system is coupled to an infinite structured reservoir. Under both setups, we show that the degree of NM
univocally determines the optimal degree of entanglement reachable by controlling the open system. This result
strongly suggests the universality of a quantitative relation between entanglement and NM by using quantum
optimal control.
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I. INTRODUCTION

Quantum technologies promise to lead a new revolution
in the so-called information age. But for the prosperous
development of these quantum technologies it is critical to
control a big variety of quantum systems with high efficiency
in the shortest time that is physically possible [1–4]. One of
the main difficulties in this context is the capability of ma-
nipulating realistic quantum systems which are unavoidably
subject to an interaction with the environment. Specifically,
the question of how to deal with the detrimental effects of
the environment, such as decoherence, is one of the most
fundamental challenges in the area [5,6]. Nevertheless, in
recent years, the possibility of exploiting the environment as a
resource for control has opened a door for the manipulation of
open quantum systems [7–10]. In particular, the so-called non-
Markovianity (NM), mainly associated with nondivisibility
of quantum maps and with a backflow of information from
the environment to the system [11–13], has been pointed
out as beneficial in a diverse set of settings, including the
protection of entanglement properties [14–18], the decrease
of the quantum speed limit [19–22], the implementation of
quantum algorithms [23], and even in the power of quantum
thermal machines [24,25].

However, because the best definition of quantum NM is
still matter of huge controversy in the literature [26–30], a
fully accepted resource theory for such a quantity has not been
formalized yet [31,32]. Under this resource framework, one
may be tempted to think that a certain amount of NM in the
system dynamics would allow one to accomplish a particular
task that would be impossible to achieve in the absence of it.
With this idea in mind, in a recent work we proposed to use
optimal control techniques as a tool to search for a quantitative
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relation between the amount of success obtained for a partic-
ular set of entangling tasks and the degree of NM present in
the dynamics. For this, we focused our study on a physical
scenario composed of N non-interacting subsystems coupled
to the same non-Markovian environment, where the task to
be accomplished consisted of driving these noninteracting
subsystems from a separable initial state to an entangled target
state [33]. There, by studying the particular case of a spin
star configuration, where N noninteracting central spins are
coupled to the same finite and small set of environmental
spins, we showed that the optimal degree of controlled en-
tanglement reached by the optimization was a direct function
of the original amount of NM of the system dynamics.

Despite the strength and interesting nature of this last
result, a fundamental question regarding what happens in
more complicated and realistic environments such as infi-
nite structured reservoirs remained unanswered. As a conse-
quence, in this work we extend the validity of this resource
mechanism by studying a completely different scheme, where
two noninteracting two-level atoms are coupled to the same
infinite structured reservoir, i.e., a leaky cavity composed
of M-harmonic oscillators. By first deriving the full time-
evolved density matrix of the reduced system, we show in
this platform that the degree of NM univocally determines the
degree of success of the entangling protocol considered, as
was observed in the case of the finite size environment studied
previously. Furthermore, for both scenarios, we explore other
control schemes in which we vary the degree of control
available over each subsystem, and discuss the different roles
played by NM in each particular case.

The fact that the same quantitative relation between NM
and entanglement is fulfilled in two radically different systems
strongly suggests the existence of a universal mechanism for
exploiting one of the most typical features of NM, i.e., the
backflow of information from the environment back to the
system, to generate entanglement.
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The paper is organized as follows. In Sec. II we present
both systems under which we construct our results and we
also discuss the measure of NM that is used. In Sec. III,
we address the interplay between NM and entanglement by
using quantum optimal control techniques to drive the open
quantum system from an initial separable state to a final target
entangled state. Finally, we conclude in Sec. IV with a final
discussion and our future perspectives.

II. SYSTEMS AND METHODS

A. Two atoms in a leaky cavity

We consider two noninteracting two-level atoms, each
one coupled to the same zero-temperature bosonic reservoir
composed by a set of M-harmonic oscillators [14,34]. The
total microscopic Hamiltonian which describes the dynamics
is of the form

H = HS + HE + Hint

= ω1(t )σ (1)
+ σ

(1)
− + ω2(t )σ (2)

+ σ
(2)
− +

M∑
k=1

ωkb†
kbk

+ (α1σ
(1)
+ + α2σ

(2)
+ ) ⊗

M∑
k=1

gkbk + H.c., (1)

where σ
(i)
± = 1

2 (σ (i)
x ± iσ (i)

y ) and σ
(i)
j ( j = x, y, z) are the Pauli

matrices of the atom i (i = 1, 2), gk is the coupling constant to
the kth mode of the bath, bk and b†

k are the usual annihilation
and creation operators, αi is a dimensionless constant that
measures the interaction with the reservoir, and ωi(t ) is the
time-dependent energy difference between the excited |1〉 and
ground |0〉 states of the atom i, which we will assume to be of
the form

ωi(t ) = ω0 + εi(t ). (2)

We consider εi(t ) to be an arbitrary driving field over the atom
i, with which we intend to drive the open system from an

initial separable state to an entangled target state. We now
proceed to derive an equation for the reduced dynamics of
both atoms. If we take the environment to be initially in
vacuum, |0B〉 (a state with no excitations in the bath), the
whole system takes an initial state of the form

|φ(0)〉 = (C01|10〉 + C02|01〉) ⊗k |0B〉, (3)

and the time evolution of the total system is given by

|φ(t )〉 = C1(t )|10〉|0B〉 + C2(t )|01〉|0B〉
+

∑
k

Ck (t )|00〉|kB〉, (4)

|kB〉 being the state of the reservoir with only one excitation
in the kth mode (|kB〉 = b†

k|0B〉). Following the procedure
put forward in the Appendix, in the continuum limit for the
environment, we can derive the following coupled differential
equations for C1(t ) and C2(t ):

C̈1 + [λ − iε1(t )]Ċ1 + α1
γ0λ

2
(α1C1 + α2ei(v1−v2 )C2) = 0

(5)
and, for symmetry,

C̈2 + [λ − iε2(t )]Ċ2 + α2
γ0λ

2
(α2C2 + α1e−i(v1−v2 )C1) = 0.

(6)

In the equations above, γ0 refers to the coupling between the
system and the bath, λ determines the width of the spectral
density of the bath, εi(t ) is the control field over the atom
i (i = 1, 2), and vi(t ) = ∫ t

0 ds ωi(s). Note that in the case
in which we are driving with ε1(t ) = ε2(t ) ∀t , since v1(t ) −
v2(t ) = ∫ t

0 ds[ε1(s) − ε2(s)], this last factor is not present in
the dynamics. At the same time, is interesting to point out that
the limit of λ → 0 corresponds to the physical situation in
which the spectral density is a delta function (i.e., the system
being coupled to just one mode of the cavity). In such a limit,
the system reduces to a two-atom Jaynes-Cummings model
[35]. The density matrix can be written as [14,34]

ρ(t ) =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 |C1(t )|2 C1(t )C∗
2 (t ) 0

0 C∗
1 (t )C2(t ) |C2(t )|2 0

0 0 0 1 − |C1(t )|2 − |C2(t )|2

⎞
⎟⎟⎟⎟⎠, (7)

where C1(t ) and C2(t ) are given by solving numerically
Eqs. (5) and (6), respectively. Finally, as in any optimal
control problem, we also need to define the functional which
we intend to maximize. In our case, the functional chosen is
the concurrence, which for the system of interest is given by
[14]

C(t ) = 2|C1(t )C∗
2 (t )|. (8)

Is simple to check that, in the case in which C1(T ) = C2(T ) =
1/

√
2, the entanglement quantified by the concurrence is

maximal.

B. Spin star configuration

To strengthen the generality of the main result of our
work and to extend the analysis made in [33], let us also
take as a physical model a spin star configuration, where two
noninteracting central spin- 1

2 particles are surrounded by a
set of N − 2 likewise environmental particles [36–39]. The
lth central spin is coupled to the kth environmental spin via
the coupling constant A(l )

k (l = 1, 2). However, to simplify the
model, let us assume that the central spins are equally coupled
to the environmental spins, i.e., A(l )

k = A(l ′ )
k′ = A with k 	= k′

and l 	= l ′. Moreover, let us consider that the central spins
are being controlled via two time-dependent control fields in
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the ŷ direction. The Hamiltonian that governs this model is
given by

H = H0 + HC (t )

= ω0

2
σ (1)

z + ω0

2
σ (2)

z +
N−2∑
k=1

(A 
σ (1) · 
σ (k+2))

+
N−2∑
k=1

(A 
σ (2) · 
σ (k+2)) + ε1(t )σ (1)
y + ε2(t )σ (2)

y , (9)

where H0 plays the role of the free Hamiltonian and HC (t ) is
the control Hamiltonian. The operators 
σ (l ) and 
σ (k) are the
Pauli operators of the lth central spin and the kth environ-
mental spin, respectively, and the quantity εl (t ) is the control
field over the lth central spin. In this particular case, the
functional we intend to maximize is the state fidelity, defined
as Fstate = |〈ψtarg||ψ (T )〉|2 [40], where |ψtarg〉 is an entangled
Bell-state of the form |�(+)〉 = 1√

2
(|00〉 + |11〉) and where

the system initially evolves from a separable state. However,
to be consistent, after optimizing the state fidelity we will
compute the concurrence of this optimal state and relate this
last quantity to the degree of NM of the system dynamics.
The concurrence is defined as C(t ) = max{0,

√
λ1 − √

λ2 −√
λ3 − √

λ4}, where {√λi} are the eigenvalues of the matrix
R = ρ(σ A

y ⊗ σ B
y )ρ∗(σ A

y ⊗ σ B
y ), with ρ∗ denoting the complex

conjugate of ρ and σ A/B
y being the Pauli matrices of central

spins A and B, respectively.

C. Non-Markovianity measure

Considering that the difficulty of establishing a single
measure for quantifying non-Markovian effects may be based
on the fact that what is called NM is actually something
encompassing different aspects of open quantum dynamics,
in this work we follow a pragmatic approach and exclusively
focus on the backflow of information feature, understanding
the different measures as descriptions of different properties
of open quantum systems [41]. In this sense, one of the main
approaches to quantify this effect was developed by Breuer,
Laine, and Piilo (BLP) [11], who based their measure on the
revivals of distinguishability between quantum states during
the dynamics. The BLP criterion states that a quantum map
is non-Markovian if there exists at least a pair of initial states
ρ1(0) and ρ2(0) such that the distinguishability between them
increases during some interval of time. The distinguishability
can be quantified by the trace distance, which is defined as
D(ρ1, ρ2) = 1

2 ||ρ1 − ρ2|| and where ||A|| = tr(
√

A†A). The
fact that the states ρ1(t ) and ρ2(t ) are becoming momentarily
more distinguishable implies that information has flowed from
the environment back to the system. Therefore, if during some
interval of time we have that

σ (ρ1(0), ρ2(0), t ) = d

dt
D(ρ1(t ), ρ2(t )) > 0, (10)

then we are in presence of non-Markovian dynamics. This
idea can also be extended to define a measure of the degree
of NM in a quantum process via

NBLP = max
{ρ1(0),ρ2(0)}

∫ T

0,σ>0
σ (ρ1(0), ρ2(0), t ′)dt ′, (11)

FIG. 1. The three different entangling protocols considered un-
der non-Markovian dynamics. (a) Single addressing (SA): we can
just access and control one of the systems. (b) Double addressing
(DA): we control both systems with different fields. (c) Global
addressing (GA): the same field is simultaneously controlling both
of the systems.

where T stands for the final evolution time of the process
considered. In order to compute the BLP measure for the
degree of NM, we take as initial orthogonal states ρ1(0) =
|10〉〈10| and ρ2(0) = |01〉〈01| [41,42]. Finally, let us also note
that NM here is quantified for a restricted time interval, due to
considering a finite evolution time for the control protocol,
which may be varied.

III. NON-MARKOVIANITY AND ENTANGLEMENT

In order to seek a quantitative interplay between entangle-
ment and NM, we study three different control protocols for
entangling the noninteracting systems and relate them with
the original amount of NM in the system dynamics. The first
protocol is named single addressing since just one of the
subsystems can be accessed and controlled via ε1(t ). In the
second protocol we control each subsystem with a different
field, ε1(t ) and ε2(t ) (double addressing), while in the last
protocol both subsystems are being controlled by the same
field ε(t ) (global addressing). In Fig. 1 we schematically show
all these protocols.

Let us first analyze qualitatively all the entangling proto-
cols under consideration. In first place, in the case of single
addressing control, is interesting to note that the field ε1(t ) just
delivers information to system 1 (S1), but in order to maximize
the concurrence it needs to hand that information to system 2
(S2) in some way. However, as can be seen from panel (a)
in Fig. 1, in order to give that information to S2 and be able
to control it, a flow of information from the environment (E )
back to the system seems to be completely necessary. This
may only occur under the presence of non-Markovian dynam-
ics, since there a new channel of information, i.e., ε1(t ) →
S1 → E → S2, is enabled. On the other hand, in the case of
double addressing, the situation is quite similar, but there two
different fields, each one coupled to one of the subsystems,
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need to deliver information to the other subsystem. As before,
this seems possible exclusively because of the features of
NM and the existence of a backflow of information from the
environment to the system. Under this non-Markovian frame,
in addition to the flows ε1(t ) → S1 and ε2(t ) → S2 we are
enabling two extra flows of information, i.e., ε1(t ) → S1 →
E → S2 and ε2(t ) → S2 → E → S1. Considering that here
we have more information channels to perform the control
task in comparison to the single addressing platform, we
should expect a better degree of success under this double
addressing scheme. Finally, in the case of global addressing
control, there is one unique field that controls both of the
systems and delivers the same information to them. Thus,
there seems to be no gain in the presence of non-Markovian
dynamics since the information that could flow from ε(t ) →
S1 → E → S2 is the same that flows from ε(t ) → S2.

In the following subsections we test this qualitative argu-
ment by showing a quantitative analysis, both for the case of
an infinite structured non-Markovian environment composed
of harmonic oscillators and for the case of a finite small-size
environment formed by a set of environmental spins.

A. Infinite structured environment: Two atoms in a leaky cavity

To perform a quantitative analysis, we need to resort to
numerical optimization for Eqs. (5) and (6) in order to max-
imize the functional given in Eq. (8). Standard optimization
tools from the Python SCIPY library were used [43]. The
procedure followed was to optimize over 10 different initial
random seeds and to divide the driving time T into equidistant
intervals such that the optimal fields possess 16 different
amplitudes. It was seen that the optimal values for the con-
currence did not improve when adding more field amplitudes.
In regards to the coupling constants of atoms 1 and 2 with
the environment, these were chosen randomly within some
proper intervals (0 < α1 < 1/

√
2 and 0 < α2 < 0.2) in order

to ensure a proper resolution of the dynamics. In Fig. 2 we
show the results obtained for the three different protocols
analyzed (single, double, and global addressing), by plotting
the optimal concurrence obtained in each optimization as
a function of the original degree of NM, quantified by the
BLP measure. Points with N < 10−6 were considered as
Markovian points and were omitted from the plot. We will
analyze these points separately.

Interestingly, depending on which entangling protocol is
being analyzed, a completely different behavior of the en-
tanglement as a function of NM arises. In first place, as
was qualitatively suggested before, under the frame of global
addressing control there is no relation between a fixed value
of NM and the optimal concurrence obtained; i.e., the same
amount of NM does not lead to the same amount of optimal
concurrence. But, surprisingly, in the cases of both single and
double addressing control the entangling fidelity is a direct
function of the original degree of NM, independently of the
coupling constant for each atom. This means that, given a
fixed value for the degree of NM of the free dynamics, there
is a specific value for the maximum entanglement you could
get by controlling the atoms.

In the same way, as can be seen from Fig. 2, there is a
commitment between the benevolent and detrimental effects

FIG. 2. Optimal entanglement obtained as a function of the orig-
inal degree of NM for the case of single addressing (SA), double
addressing (DA), and global addressing (GA). In the upper panel
driving time is fixed as T = 1, while in the lower panel T = 4 (h̄ = 1
and in units of 1/ω0). Each point represents a physical situation in
which random coupling constants α1 and α2 are chosen within the
intervals 0 < α1 < 1/

√
2 and 0 < α2 < 0.2. Just points inside the

interval 10−6 < N < 0.3 are shown, while points with N < 10−6

were excluded in the plot for being considered inside the Markovian
regime. For further discussion about the Markovian regime, see main
text and Fig. 3.

of the environment. While on one hand NM results in the
fundamental resource for generating entanglement, on the
other hand, as time grows, decoherence worsens the optimal
degree of entanglement that can be achieved by the control.
This detrimental effect can be better appreciated for the case
of single addressing control, while the double addressing
method seems more robust to it. This is consistent with the
fact that in the latter we have a greater degree of control over
the system, since both drivings are acting simultaneously.

In order to shed more light into the role of NM under
this entangling scheme, let us address now the following
unanswered question: What is the role of the control in the
Markovian regime? To answer this issue, let us take into
consideration just the case of single addressing control and
analyze both the Markovian and non-Markovian regions. In
Fig. 3 we plot the concurrence as a function of NM and show
not only the optimal degree of entanglement reached by the
control, but also the natural degree of entanglement achieved
when the dynamics is not being controlled externally.

Notably, it can be seen that in the Markovian regime
(N < 10−6) there are some points at which, despite having
an appreciable amount of entanglement in the noncontrolled
case, the control field cannot do anything to improve their
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FIG. 3. Concurrence as a function of the original degree of NM
in the case without control (yellow stars) and considering control
under the single addressing method (black dots). Both Markovian
and non-Markovian regions are shown for the same set of random
couplings used in Fig. 2. The Markovian regime is highlighted with
a grey area. Driving time is T = 1 (h̄ = 1 and in units of 1/ω0).

values, considering that there is no flow of information that
allows it to do so. The driving time is low enough in these
cases that revivals of distinguishability do not appear in the
derivative of the trace distance [see Eq. (10)]. On the other
hand, the fact of having a certain amount of entanglement
in this region is not surprising since it is well known that a
common environment can entangle two subsystems coupled
to it, independently of the existence of NM [44,45]. However,
the surprising fact is that, in the non-Markovian region, given
a specific amount of NM, this specific amount enables the
control to generate a specific amount of entanglement. Indeed,
in this regime we can observe that, while the same amount
of NM leads to different values of entanglement in the non-
controlled case (yellow stars), the use of the control field
generates a nontrivial increasing curve between entanglement
and NM (black dots), strongly suggesting that the optimal
amount of entanglement you finally get is a direct function
of the original amount of NM in the system dynamics.

B. Finite small-size environment: Spin star configuration

We now focus on a totally different system, where the size
of the environment is finite and quite small. Indeed, we restrict
ourselves to the case of 2 � N � 8, where we have complete
knowledge of the whole open system plus environment. Thus,
even though we are just interested in the open dynamics of the
two no-interacting central spins, we solve the whole unitary
optimized evolution and then trace over the environmental
degrees of freedom to obtain the sought reduced dynamics.
In Fig. 4 we show the results for the concurrence as a func-
tion of the original amount of NM of the system dynamics
for the three entangling protocols under consideration, i.e.,
single, double, and global addressing. The driving time has
been divided into 250 equidistant time intervals, enough to

FIG. 4. Concurrence as a function of the original degree of NM
in the case of single addressing (SA), double addressing (DA), and
global addressing (GA). Each point represents a dynamics in which
the coupling constants are chosen randomly in the interval 0 � A �
0.2, the total number of spins is also arbitrarily chosen within 2 �
N � 8 and the driving time is fixed in T = 10 (h̄ = 1 and in units of
1/ω0). On the other hand, in the inset we show the concurrence as
a function of the original degree of NM in the case without control
(yellow stars) and considering control under the single addressing
method (black dots). The parameters in the inset are the same as in
the main plot.

ensure a proper resolution of the dynamics, and the optimal
concurrence shown is the maximum obtained after optimizing
over 10 different initial random seeds. For this system, op-
timization tools from the open-source Python library QUTIP
were used [40].

As in the system previously analyzed, we can also observe
that, in the cases of both single and double addressing control,
the optimal entanglement reachable by the optimization is a
direct function of the original amount of NM of the system
dynamics, while in the case of global addressing there is no
quantitative relation at all. In the same way, it can be seen that,
given a fixed amount of NM, the double addressing scheme
allows reaching a better degree of entanglement, at least for
low values of NM. On the other hand, in the inset of Fig. 4
we show the natural degree of entanglement reached without
performing any optimization as well as the optimal entan-
glement obtained in the case of single addressing control.
From here we can note that, despite the entanglement in the
noncontrolled case not being determined by the degree of NM,
the clever use of the control field generates again a nontrivial
increasing curve between the optimal degree of entanglement
and the degree of NM. As well as in the system of two
noninteracting atoms in a leaky cavity, this is shown just for
single addressing control, but the same situation occurs in the
double addressing scheme.

The analysis performed in this subsection for the spin star
configuration allows us to extend and provide a deeper insight
to the results obtained in Ref. [33] for a similar configuration,
where other target states and cases were covered under single
addressing control.
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IV. CONCLUDING REMARKS

In this work we sought a quantitative and universal re-
lation, if it exists, between entanglement and NM. For this
purpose, by using quantum optimal control as a searching
tool, we related the degree of success of a particular set of
entangling tasks with respect to the degree of NM of the
system dynamics. In this sense, by considering a physical
setup composed of two noninteracting subsystems coupled
to the same non-Markovian environment, we revealed the
existence of an entangling control task that is unachievable in
the Markovian regime and whose degree of success depends
univocally on the degree of NM of the dynamics. To test
the universality of this resource mechanism, two radically
different systems were analyzed: on one hand a system
composed of two noninteracting atoms coupled to the same
infinite structured reservoir of harmonic oscillators, and on
the other hand a configuration of two noninteracting central
spins coupled to the same small set of environmental spins.
Despite the different nature of the systems considered, both
cases rendered the same results, i.e., the degree of optimal
entanglement reached by the optimization proved to be a
direct function of the degree of NM of the system dynamics.
In summary, the work consists in a practical demonstration of
NM being exploited as a quantifiable and essential resource
for generating entanglement in a general physical setup.

Last, given the fact that an extended control over the
degree of NM was recently proved experimentally in photonic
setups [46–51], in the dynamics of a nitrogen-vacancy center
electron spin [52] and in trapped ion systems [53], we sin-
cerely hope that this resource mechanism can be implemented
experimentally in the near future. For this, a full control over
synthesis of noise spectral density is required, which can be
achieved using artificially engineered environments [54–57].
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APPENDIX: DERIVATION OF THE REDUCED
CONTROLLED DYNAMICS OF TWO NONINTERACTING

ATOMS IN A LEAKY CAVITY

In order to derive the full reduced controlled dynamics
given by the Hamiltonian of Eq. (1), we need to go to the inter-
action representation with respect to HS and HE by means of
a unitary transformation U0 and obtain the transformed inter-
action Hamiltonian H̃int = U †

0 HintU0, where U0(t ) = (U (S1 )
0 ⊗

U (S2 )
0 ) ⊗ U (B)

0 (t ). Assuming h̄ = 1 from now on, we have

U
(S j )
0 = exp

(
−i

∫ t

0
ω j (t

′)σ ( j)
+ σ

( j)
− dt ′

)
(A1)

and

U (B)
0 (t ) = exp

(
−i

∑
k

ωkb†
kbkt

)
, (A2)

which gives

H̃int (t ) = (α1σ̃
(1)
+ (t ) + α2σ̃

(2)
+ (t )) ⊗ B̃(t ). (A3)

We have defined B̃(t ) as

B̃(t ) = U (B)†
0 (t )

(∑
k

gkbk

)
U (B)

0 (t ) =
∑

k

gke−iωkt bk (A4)

and

σ̃
( j)
+ (t ) = U

(S j )†
0 (t )σ ( j)

+ U
(S j )
0 (t ) = σ

( j)
+ eiv j (t ), (A5)

where v j (t ) = ∫ t
0 ω j (t ′)dt ′.

Starting with an initial state of the form

|φ(0)〉 = (C01|10〉 + C02|01〉) ⊗k |0B〉, (A6)

the time evolution of the total system is given by

|φ(t )〉 = C1(t )|10〉|0B〉 + C2(t )|01〉|0B〉 +
∑

k

Ck (t )|00〉|kB〉,

(A7)

|kB〉 being the state of the reservoir with only one excitation
in the kth mode. If we note that |ϕ10〉 = |10〉|0B〉, |ϕ01〉 =
|01〉|0B〉, |ϕk〉 = |00〉|kB〉, we then have

|φ̇(t )〉 = Ċ1|ϕ10〉 + Ċ2|ϕ01〉 +
∑

k

Ċk|ϕk〉. (A8)

As we are interested in the equations of motion for the evolu-
tion of the coefficients Cj (t ), we must calculate the following
elements:

〈ϕ10||φ̇〉 = Ċ1 = −i〈ϕ10|H̃int|φ(t )〉,
〈ϕ01〉φ̇ = Ċ2 = −i〈ϕ01|H̃int|φ(t )〉,
〈ϕk〉φ̇ = Ċk = −i〈ϕk|H̃int|φ(t )〉.

(A9)

In the first place,

〈ϕ10|H̃int|ϕ10〉 = 〈10|α1σ̃
(1)
+ + α2σ̃

(2)
+ |10〉〈0B|B̃|0B〉

+ (· · · )〈0B|B̃†|0B〉, (A10)

but 〈0B|B̃|0B〉 and 〈0B|B̃†|0B〉 are both zero. The same happens
for elements 〈ϕ01|H̃int|ϕ01〉 and for 〈ϕ10|H̃int|ϕ01〉. On the other
hand,

〈ϕ10|H̃int|ϕk〉 = 〈10|α1σ̃
(1)
+ + α2σ̃

(2)
+ |00〉〈0B|B̃|kB〉

+ 〈10|α∗
1 σ̃

(1)
− + α∗

2 σ̃
(2)
− |00〉〈0B|B̃†|kB〉

= α1eiv1(t )〈10||10〉gke−iωkt . (A11)

In consequence

Ċ1 = −iα1

∑
k

gkei[v1(t )−ωkt]Ck (t ), (A12)

and, for symmetry,

Ċ2 = −iα2

∑
k

gkei[v2(t )−ωkt]Ck (t ). (A13)
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In an analogous way,

〈ϕk|H̃int|ϕk〉 ∝ 〈0|σ±|0〉 = 0,

〈ϕk|H̃int|ϕ10〉 = g∗
kα1e−i[v1(t )−ωkt],

〈ϕk|H̃int|ϕ01〉 = g∗
kα2e−i[v2(t )−ωkt].

(A14)

Consequently,

Ċk (t ) = − ig∗
k (α1e−i[v1(t )−ωkt]C1(t ) + α2e−i[v2(t )−ωkt]C2(t )).

(A15)

Integrating the last equation,

Ck (t ) − Ck (0) = − ig∗
k

∫ t

0
dt ′(α1e−i[v1(t ′ )−ωkt ′]C1(t ′)

+ α2e−i[v2(t ′ )−ωkt ′]C2(t ′)), (A16)

where Ck (0) = 0 since the initial bath state is vacuum. From
now on we use 

( j)
k (t ) = v j (t ) − ωkt .

Inserting Eq. (A16) into Eq. (A12) we get

Ċ1(t ) = −
∑

k

|gk|2ei(1)
k (t )

∫ t

0
dt ′(α2

1e−i(1)
k (t ′ )C1(t ′)

+ α1α2e−i(2)
k (t ′ )C2(t ′)

)
= −

∫ t

0
dt ′ ∑

k

|gk|2
(
α2

1ei((1)
k (t )−

(1)
k (t ′ ))C1(t ′)

+ α1α2ei((1)
k (t )−

(2)
k (t ′ ))C2(t ′)

)
, (A17)

where 
(a)
k (t ) − 

(b)
k (t ′) = va(t ) − ωkt − vb(t ′) + ωkt ′ =

−ωk (t − t ′) + va(t ) − vb(t ′).
In the continuum limit for the environment, we can intro-

duce a general spectral density J (ω) and obtain

Ċ1(t ) = −
∫ t

0
dt ′

(∫
dω J (ω)e−iω(t−t ′ )

)

× (
α2

1ei[v1(t )−v1(t ′ )]C1(t ′) + α1α2ei[v1(t )−v2(t ′ )]C2(t ′)
)
.

(A18)

Considering that the bath correlation function is F (t − t ′) =∫
dω J (ω)e−iω(t−t ′ ), the above equation then becomes

Ċ1(t ) = −
∫ t

0
dt ′eiv1(t )F (t − t ′)

× (
α2

1e−iv1(t ′ )C1(t ′) + α1α2e−iv2(t ′ )C2(t ′)
)
. (A19)

And for symmetry we have

Ċ2(t ) = −
∫ t

0
dt ′eiv2(t )F (t − t ′)

× (
α2

2e−iv2(t ′ )C2(t ′) + α1α2e−iv1(t ′ )C1(t ′)
)
. (A20)

At this point is interesting to note that the equations for C1(t )
and for C2(t ) are coupled with each other, which suggests

the possibility that the control field may be able to tune the
entanglement between the two atoms.

Now let us rewrite Eqs. (A19) and (A20) as

Ċl (t ) = −
∫ t

0
dt ′F (t − t ′)eivl (t )ml (t

′), (A21)

where l = 1, 2. Consider J (ω) to be of Lorentzian form, i.e.,

J (ω) = γ0

2π

λ2

(ω − ω0)2 + λ2
, (A22)

where γ0 refers to the effective coupling between the system
and the bath and λ is the width of the spectral density. In this
frame, we get

F (t − t ′) = p0eq0(t−t ′ ), (A23)

where we have defined p0 = γ0λ

2 and q0 = −(λ + iω0). Con-
sequently, by defining g1(t ) = Ċ1(t )/C1(t ), we have

g1(t ) = Ċ1(t )

C1(t )
= −

∫ t

0
dt ′F (t, t ′)eiv1(t ) m1(t ′)

C1(t )
. (A24)

If we now denote h(t, t ′) = eiv1(t ) m1(t ′ )
C1(t ) , then

∂

∂t
h(t, t ′) = ml (t

′)
(

iv̇l (t )C1(t ) − Ċ1(t )

C2
1 (t )

)
eivl (t ) (A25)

∂

∂t
h(t, t ′) = h(t, t ′)[iω1(t ) − g(t )], (A26)

and so we have

ġ1(t ) = − d

dt

(∫ t

0
dt ′F (t, t ′)h(t, t ′)

)

= −F (0)h(t, t ) −
∫ t

0
dt ′

(
∂

∂t
[F (t, t ′)h(t, t ′)]

)

= −p0h(t, t ) −
∫ t

0
dt ′

(
q0F (t, t ′)h(t, t ′)

+ F (t, t ′)
∂

∂t
h(t, t ′)

)
= −p0h(t, t ) + q0g1(t ) + [iω1(t ) − g1(t )]g1(t )

= −p0h(t, t ) + g1(t )[q0 + iω1(t ) − g1(t )]

= −p0eiv1(t ) m1(t )

C1(t )
+ g1(t )[q0 + iω1(t ) − g1(t )]

= −p0

(
α2

1 + α1α2
C2(t )

C1(t )
ei[v1(t )−v2(t )]

)
+ g1(t )(q0 + iω1(t ) − g1(t ))

= −p0α1

(
α1 + α2

C2(t )

C1(t )
ei[v1(t )−v2(t )]

)
+ g1(t )[q0 + iω1(t ) − g1(t )]. (A27)

Considering that at the same time, by differentiating
Eq. (A24), we get

ġ1 = C̈1C1 − Ċ2
1

C2
1

, (A28)
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then

C̈1

C1
− Ċ2

1

C2
1

= − p0α1

(
α1 + α2

C2(t )

C1(t )
ei(v1−v2 )

)

+ Ċ1

C1

(
q0 + iω1 − Ċ1

C1

)
. (A29)

Noting that p0 = γ0λ/2, ω1(t ) = ω0 + ε1(t ) and q0 =
−λ − iω0, we obtain q0 + iω1 = −λ − iω0 + iω0 + iε1(t ) =
iε1(t ) − λ. The differential Eq. (A29) then becomes

C̈1 = −[λ − iε1(t )]Ċ1 − α1
γ0λ

2
(α1C1 + α2ei(v1−v2 )C2).

(A30)

Reordering the terms, we finally get

C̈1 + [λ − iε1(t )]Ċ1 + α1
γ0λ

2
(α1C1 + α2ei(v1−v2 )C2) = 0.

(A31)
And, for symmetry,

C̈2 + [λ − iε2(t )]Ċ2 + α2
γ0λ

2
(α2C2 + α1e−i(v1−v2 )C1) = 0,

(A32)

where vl (t ) = ∫ t
0 ds ωl (s). These are the exact equations of

motion for the reduced dynamics of the driven two noninter-
acting atoms coupled to a Lorentzian bath at zero temperature,
under the rotating wave approximation (RWA).
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